Kollektoren weltweit:

Degradationseffekte & Messergebnisse

Dr. Stephan Fischer

Universität Stuttgart Institut für Thermodynamik und Wärmetechnik (ITW) Forschungs- und Testzentrum für Solaranlagen (TZS)

© SpeedColl Fraunhofer

Kollektoren weltweit: Degradationseffekte & Messergebnisse

Degradationseffekte am Gesamtkollektor

- Was haben wir erwartet?
- Was ist passiert
- > Bauteiltemperaturen
 - Messung und Modellierung
 - Simulationen
- Feuchte im Kollektor
 - Ergebnisse Messung
- Kollektoren vor und nach der Exposition
 - Leistung
 - Aussehen

Zu untersuchende Degradationsfaktoren laut Projektantrag

Hohe Betriebstemperaturen

Feuchte

Salzhaltige Atmosphäre

Degradationseffekte am Gesamtkollektor Fehlermöglichkeits- und Einflussanalyse zu Projektbeginn

Höchste Risikoprioritätszahlen Erwartete Degradation

Dicht- und Klebematerialien

- Undichtigkeit
- Versagen der Klebung
- Ausgasung

Absorberbeschichtung

- Veränderung der optischen Eigenschaften
- Veränderungen im Aussehen

Wärmedämmung

Durchfeuchtung

Dicht- und Klebematerialien

Versagen der Klebung

Auf 2/3 Höhe und mittig bezüglich der Breite

Vorderseite

Degradationseffekt Temperatur Absorber

und Energie

© SpeedColl

Degradationseffekt Temperatur Klebefuge

Degradationseffekt Temperatur Erkenntnisse

- Höchste Absorbertemperatur auf der Zugspitze
- Höchste Temperaturspreizung auf der Zugspitze
- Vermeidliche "heiße Standorte" zeigen vergleichsweise niedrige Temperaturen aufgrund des Neigungswinkel (höhere Konvektions- und Strahlungsverluste)
- Höchste Klebenfugentemperatur in Kochi aufgrund der höchsten Umgebungstemperatur
- Zur Untersuchung der Temperaturbelastung in Abhängigkeit des Standorts und der Anwendung ist Modellierung der Bauteiltemperaturen notwendig

Modellierung Bauteiltemperaturen Absorber

Modellierung in Abhängigkeit von:

- > Hemisphärischer Bestrahlungsstärke
- > Einfallswinkel der hemisphärischen Bestrahlungsstärke
- Umgebungstemperatur
- Neigungswinkel
- Betriebszustand (durchströmt / nicht durchströmt)

$$c_{abs}\frac{d\vartheta_{abs}}{dt} = C_1 \cdot G \cdot K_{b,abs}(\theta) - C_2(\beta) \cdot (\vartheta_{abs} - \vartheta_{amb}) - C_3 \cdot (\vartheta_{abs} - \vartheta_{amb})^2$$

$$C_2(\beta) = C_{21} \cdot \left(1 + \frac{45 - \beta}{C_{22}}\right)$$

$$\vartheta_{abs} = C_4 + C_5 \cdot \vartheta_{fl,m}$$

© SpeedColl Fraunhofer

Modellierung Bauteiltemperaturen Klebefuge

Modellierung in Abhängigkeit von:

- > Hemisphärischer Bestrahlungsstärke
- > Absorbertemperatur
- Umgebungstemperatur

$$c_{KF}\frac{d\vartheta_{KF}}{dt} = C_6 \cdot G - C_7 \cdot (\vartheta_{KF} - \vartheta_{amb}) - C_8 \cdot (\vartheta_{KF} - \vartheta_{abs})$$

Modellierung Bauteiltemperaturen Absorber

Modellierung Bauteiltemperaturen Absorber im Betrieb am Standort Würzburg

Temperaturbereich in °C

Modellierung Bauteiltemperaturen Absorber im Betrieb an unterschiedlichen Standorten

Temperaturbereich in °C

Degradationseffekt Feuchte Messungen

Erfasst werden:

- > Temperatur zwischen Glas und Absorber
- relative Luftfeuchtigkeit zwischen Glas und Absorber
- > Absorbertemperaturen
- zusätzlich Umgebungstemperatur und rel. Luftfeuchtigkeit außerhalb der Kollektoren, auf derselben Höhe

Degradationseffekt Feuchte Messung relative Feuchte

Degradationseffekt Feuchte Messung absolute Feuchte

Exposition Kochi - Umgebung

Exposition Kochi - rel. Feuchte Kollektoren

Exposition Kochi - abs. Feuchte Kollektoren

Absolute Feuchte Zwischenraum- Klebefugentemperatur

Absolute Feuchte Umgebung - Klebefugentemperatur Häufigkeit in Stunden

		absolute Luftfeuchtigkeit in g/kg									
		0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	14 - 16	16 - 18	18 - 20
Klebefugentemperatur in °C	-105	0	54	0	0	0	0	0	0	0	0
	-5 - 0	0	460	115	0	0	0	0	0	0	0
	0 - 5	0	426	1299	11	0	0	0	0	0	0
	5 - 10	0	201	749	575	13	0	0	0	0	0
	10 - 15	0	101	254	618	657	193	0	0	0	0
	15 - 20	0	70	123	197	257	293	58	0	0	0
	20 - 25	0	81	117	138	112	104	41	3	0	0
	25 - 30	0	56	111	123	80	77	41	3	0	0
	30 - 35	0	39	85	106	63	66	35	4	0	0
	35 - 40	0	12	53	68	50	60	33	2	0	0
	40 - 45	0	0	18	40	33	46	25	1	0	0
	45 - 50	0	0	8	22	17	15	9	1	0	0
	50 - 55	0	0	0	9	10	4	1	0	0	0
	55 - 60	0	0	0	0	1	0	0	0	0	0

Degradationseffekte am Gesamtkollektor Exposition in Stuttgart (bisher 3,5 Jahre)

- Keine optischen Veränderungen
- Keine Veränderung der thermischen Leistungsfähigkeit

Degradationseffekte am Gesamtkollektor Leistungsprüfung nach einem und drei Jahren Exposition Stuttgart

Degradationseffekte am Gesamtkollektor Exposition an den Extremstandorten Gran Canaria, Spanien Nach bzw. 2,5 Jahre GC

Degradationseffekte am Gesamtkollektor Exposition in der Negev Wüste, Israel

Degradationseffekte am Gesamtkollektor Exposition in der Negev Wüste, Israel

Sand und Staubeintrag sowie Ausbleichen der Rahmen

Verklebung Glas-Rahmen: umlaufende Haftung vorhan

Degradationseffekte am Gesamtkollektor Exposition an den Extremstandorten Negev Wüste, Israel

Degradationseffekte am Gesamtkollektor Exposition an den Extremstandorten Negev Wüste, Israel

Degradationseffekte am Gesamtkollektor Exposition an den Extremstandorten Negev Wüste, Israel

Degradationseffekte am Gesamtkollektor Exposition in Kochi, Indien

Degradationseffekte am Gesamtkollektor Exposition in Kochi, Indien

Degradationseffekte am Gesamtkollektor Exposition in Kochi, Indien Öffnung der Kollektoren

Verklebung Glas-Rahmen: umlaufende Haftung vorhanden

Glasabdeckung - Gesamteindruck:

- 2 Kollektortypen: keine sichtbare Veränderung
- 1 Kollektortyp: sichtbare Veränderungen "verfärbt/milchig/schlierig"

Degradationseffekte am Gesamtkollektor Exposition in Kochi, Indien Öffnung der Kollektoren

Glasabdeckung - Detail:

- 2 Kollektortypen Staub/Schmutz im Zwischenraum → Ablagerung auf Innenseite Glas und Absorber
- **1 Kollektortyp** Staub/Schmutz nicht vorhanden (deutlich weniger)

Degradationseffekte am Gesamtkollektor Exposition an den Extremstandorten Kochi, Indien

Degradationseffekte am Gesamtkollektor Leistungsprüfung nach Exposition in Kochi, Indien

Degradationseffekte am Gesamtkollektor Leistungsprüfung nach Exposition in Kochi, Indien

Degradationseffekte am Gesamtkollektor Leistungsprüfung nach Exposition in Kochi, Indien

Degradationseffekte am Gesamtkollektor Exposition der Kollektoren – Erkenntnisse

Stuttgart

Keine optischen Auffälligkeiten, kaum Leistungseinbußen

Zugspitze

Extrem saubere Kollektoren, Leistungseinbuße bei einem Kollektor

Gran Canaria, Spanien

 Deutlich optische Veränderung der Kollektoren durch die Kombination Wind, Sand und Salz, Leistungseinbuße bei einem Kollektor

Negev Wüste, Israel

 Sichtbare Veränderung der Kollektoren durch die Kombination Sand und Staub, wesentlich geringere Korrosion als auf Gran Canaria, Leistungseinbuße bei zwei Kollektoren

Degradationseffekte am Gesamtkollektor Exposition der Kollektoren – Erkenntnisse

Kochi, Indien

- Hartnäckige Verschmutzung an den Außenflächen der Kollektoren trotz Monsun
- Teilweise Dreckablagerungen an den Innenseiten der Glasabdeckungen – bauartbedingte Unterschiede
- Leistungseinbuße bei zwei Kollektoren

Gute Qualität der untersuchten Kollektoren

aber

vereinzelte bauartspezifische und standortabhängige Ausnahmen

Verlängerung der Exposition und weitere Analysen notwendig

Vielen Dank für Ihre Aufmerksamkeit!

fischer@itw.uni-stuttgart.de

www.speedcoll.de

